Attenuation of radiated ground motion and stresses from three-dimensional supershear ruptures

نویسندگان

  • Eric M. Dunham
  • Harsha S. Bhat
چکیده

[1] Radiating shear and Rayleigh waves from supershear ruptures form Mach waves that transmit large-amplitude ground motion and stresses to locations far from the fault. We simulate bilateral ruptures on a finite-width vertical strike-slip fault (of width W and half-length L with L W) breaking the surface of an elastic half-space, and focus on the wavefield out to distances comparable to L. At distances much smaller than W, two-dimensional plane-strain slip-pulse models (i.e., models in which the lateral extent of the slip zone is unbounded) accurately predict the subsurface wavefield. Amplitudes in the shear Mach wedge of those models are undiminished with distance from the fault. When viewed from distances far greater than W, rupture is accurately modeled as a moving point source that produces a shear Mach cone and, on the free surface, Rayleigh-wave Mach fronts. Geometrical spreading of the shear Mach cone occurs radially and amplitudes there decrease with the inverse square-root of distance. The transition between these two asymptotic limits occurs at distances comparable to W. Similar considerations suggest that Rayleigh Mach waves suffer no attenuation in the ideally elastic medium studied here. The rate at which fault strength weakens at the rupture front exerts a strong influence on the off-fault fields only in the immediate vicinity of the fault (for both sub-Rayleigh and supershear ruptures) and at the Mach fronts of supershear ruptures. More rapid weakening generates larger amplitudes at the Mach fronts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental investigation of strong groundmotion due to thrust fault earthquakes

Thrust fault earthquakes are studied in a laboratory earthquake setup previously used to investigate analog strike-slip seismic events. Dynamic mode II ruptures are generated along preexisting faults in an analog material, Homalite H-100, and their interaction with the free surface is studied for both sub-Rayleigh and supershear rupture speeds. High-speed digital photography and laser velocimet...

متن کامل

Coherence of Mach fronts during heterogeneous supershear earthquake rupture propagation: Simulations and comparison with observations

[1] We study how heterogeneous rupture propagation affects the coherence of shear and Rayleigh Mach wavefronts radiated by supershear earthquakes. We address this question using numerical simulations of ruptures on a planar, vertical strike‐slip fault embedded in a three‐dimensional, homogeneous, linear elastic half‐space. Ruptures propagate spontaneously in accordance with a linear slip‐weaken...

متن کامل

Near-Source Ground Motions from Simulations of Sustained Intersonic and Supersonic Fault Ruptures

We examine the long-period near-source ground motions from simulations of M 7.4 events on a strike-slip fault using kinematic ruptures with rupture speeds that range from subshear speeds through intersonic speeds to supersonic speeds. The strong along-strike shear-wave directivity present in scenarios with subshear rupture speeds disappears in the scenarios with ruptures propagating faster than...

متن کامل

Pulse-like ruptures induced by low-velocity fault zones

[1] Low-velocity fault zones (LVFZs) are found in most mature faults. They are usually 100–400 m wide and have 20%–60% wave velocity reductions relative to the country rock. To study the effect of LVFZs on earthquake rupture and the radiated wavefield, we conducted two-dimensional (2-D) simulations of dynamic rupture on faults that bisect a LVFZ, considering a range of velocity reductions and w...

متن کامل

Observation of far-field Mach waves generated by the 2001 Kokoxili supershear earthquake

[1] Regional surface wave observations offer a powerful tool for determining source properties of large earthquakes, especially rupture velocity. Supershear ruptures, being faster than surface wave phase velocities, create far-field surface wave Mach cones along which waves from all sections of the fault arrive simultaneously and, over a sufficiently narrow frequency band, in phase. We present ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008